organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6,6'-Dimethoxy-2,2'-[*m*-phenylenebis(nitrilomethylidyne)]diphenol

Mohammed H. Al-Douh,^a Shafida A. Hamid,^a‡ Hasnah Osman,^a Shea-Lin Ng^b and Hoong-Kun Fun^b*

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 16 July 2007; accepted 17 July 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.048; wR factor = 0.159; data-to-parameter ratio = 20.9.

In the title compound, $C_{22}H_{20}N_2O_4$, the central benzene ring forms dihedral angles of 33.58 (7) and 35.27 (7)° with the terminal benzene rings. The molecular conformation is stabilized by two intramolecular $O-H\cdots$ N hydrogen bonds. In the crystal structure, the molecules are linked by intermolecular $C-H\cdots$ O interactions to form sheets parallel to the *bc* plane. The sheets are then stacked along the *a* axis. In addition, the crystal structure is stabilized by weak $C-H\cdots\pi$ interactions.

Related literature

For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For bond length data, see: Allen *et al.* (1987). For related literature, see: Baseer *et al.* (2000); Bedioui *et al.* (1999); Campos *et al.* (1999); Desai *et al.* (2001); El-Masry *et al.* (2000); Eltayeb *et al.* (2007); Jarrahpour *et al.* (2004); Jarrahpour & Zarei (2004); Kabeer *et al.* (2001); Kuz'min, *et al.* (2000); More *et al.* (2001); Naeimi *et al.* (2007); Park & Kim (2000); Singh & Dash (1988); So *et al.* (2007); Trevin *et al.* (1997); Vigato & Tamburini (2004).

‡ Additional correspondence author; e-mail: shafida@usm.my.

Crystal data

Data collection

Bruker SMART APEX II CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.893, T_{max} = 0.979$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.159$ S = 1.075487 reflections 263 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 02 - H2A \cdots N1 \\ 04 - H4B \cdots N2 \\ C4 - H4A \cdots O1^{i} \\ C5 - H5A \cdots O2^{i} \\ C22 - H22A \cdots O4^{ii} \\ C9 - H9A \cdots Cg1^{iii} \\ C11 - H11A \cdots Cg2^{i} \end{array}$	0.98 (2) 0.91 (2) 0.93 0.93 0.96 0.93 0.93	1.67 (2) 1.75 (2) 2.50 2.45 2.60 2.86 2.91	2.590 (2) 2.592 (2) 3.340 (2) 3.296 (2) 3.502 (2) 3.709 (2) 3.351 (2)	155 (2) 151 (2) 151 151 157 152 111

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y, -z + 1; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

We thank the Malaysian Government and Universiti Sains Malaysia (USM) for an FRGS grant (203/PKIMIA/671046) to conduct this work. MHA-D thanks the Yemen Government and Hadhramout University of Science and Technology (HUST) for financial scholarship support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2439).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Baseer, M. A., Jadhav, V. D., Phule, R. M., Archana, Y. V. & Vibhute, Y. B. (2000). Orient. J. Chem. 16, 553–556.
- Bedioui, F., Gutierrez, G. & Charreton, C. B. (1999). Recent Res. Dev. Electrochem. Rev. Paris, 2, 91–108.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

 $V = 3726.8 \text{ (3) } \text{Å}^{3}$ Z = 8 Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 100.0 (1) K 0.80 \times 0.41 \times 0.23 mm

3714 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.031$

H atoms treated by a mixture of

refinement

 $\Delta \rho_{\text{max}} = 0.25 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

independent and constrained

20168 measured reflections

5487 independent reflections

- Bruker (2005). APEX2 (Version 1.27), SAINT (Version Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Campos, A., Anacona, J. R. & Campos, M. M. (1999). *Main Group Met. Chem.* **22**, 283–288.
- Desai, S. B., Desai, P. B. & Desai, K. R. (2001). *Heterocycl. Commun.* **7**, 83–90. El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). *Molecules*, **5**,
- 1429–1438. Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, 0695–0696.
- Jarrahpour, A. A., Motamedifar, M., Pakshir, K., Hadi, N. & Zarei, M. (2004). Molecules, 9, 815-824.
- Jarrahpour, A. A. & Zarei, M. (2004). Molbank, pp. 377-378.
- Kabeer, A. S., Baseer, M. A. & Mote, N. A. (2001). Asian J. Chem. 13, 496-500.
- Kuz'min, V. E., Lozitsky, V. P., Kamalov, G. L., Lozitskaya, R. N., Zheltvay, A. I., Fedtchouk, A. S. & Kryzhanovsky, D. N. (2000). Acta Biochim. Pol. 47, 867–876.

- More, P. G., Bhalvankar, R. B. & Pattar, S. C. (2001). J. Indian Chem. Soc. 78, 474–475.
- Naeimi, H., Safari, J. & Heidarnezhad, A. (2007). Dyes Pigments, 73, 251-253.
- Park, M. & Kim, Y. (2000). Thin Solid Films, 363, 156-159.
- Sheldrick, G. M. (1998). *SHELXTL*. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.
- So, B. K., Kim, W. J., Lee, S. M., Jang, M. C., Song, H. H. & Park, J. H. (2007). Dyes Pigments, 73, 619–653.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Trevin, S., Bedioui, F., Gómez, M. G. & Charreton, C. B. (1997). J. Mater. Chem. 7, 923–928.
- Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.

Acta Cryst. (2007). E63, o3570-o3571 [doi:10.1107/S1600536807034812]

6,6'-Dimethoxy-2,2'-[m-phenylenebis(nitrilomethylidyne)]diphenol

M. H. Al-Douh, S. A. Hamid, H. Osman, S.-L. Ng and H.-K. Fun

Comment

Schiff bases rank among the most versatile synthetic organic intermediates. They are reported to show a variety of biological activities including antifungal (Singh & Dash, 1988; More *et al.*, 2001), antibacterial (Baseer *et al.*, 2000; El-Masry *et al.*, 2000; Kabeer *et al.*, 2001) and anticancer (Kuz'min *et al.*, 2000; Desai *et al.*, 2001) among others. They are also employed as receptors to the neutral guest molecules (Park & Kim, 2000) and found many applications in bioorganic catalysis, separation process and environmental chemistry (Trevin *et al.*, 1997; Bedioui *et al.*, 1999; Campos *et al.*, 1999). The imines formed from the reaction of the aldehydes and amines also proved to be the source of versatile ligands for many transition metals where they act as ligand donor groups to bind to the metal ions (Vigato & Tamburini, 2004). Schiff bases are also used to produce azo dyes (Jarrahpour & Zarei, 2004; Naeimi *et al.*, 2007) and they also show moderate activity against *Staphylococcus aureus and Bacillus subtilis* (Jarrahpour *et al.*, 2004). In another application, So *et al.*, 2007). Given its importance in many areas of synthetic chemistry, we have synthesized a new symmetric Schiff base by the condensation of *o*-vanillin with *m*-phenylene diamine and its X-ray crystal structure is presented here.

The bond lengths and angles in (I) have normal values (Allen *et al.*, 1987) and are comparable with those in the related structures (Eltayeb *et al.*, 2007). The dihedral angles between the central benzene ring (C8—C13) and the terminal benzene rings [(C1—C6) and (C15—C20)] are 33.58 (7) and 35.27 (7)°, respectively. The methoxy group at C2 is slightly twisted from the attached benzene ring [C21—O1—C2—C3 = -11.33 (18)°] whereas the methoxy group at C19 is almost coplanar with the attached benzene rings with torsion angle of C22—O3—C19—C18 = 4.0 (2)°.

Intramolecular O2—H2A···N1 and O4—H4B···N2 interactions generate S(6) ring motifs (Table 1 and Figure 1) (Bernstein *et al.*, 1995). In the crystal structure, the molecules are linked by intermolecular C4—H4A···O1, C5—H5A···O2 and C22—H22A···O4 interactions to form sheets parallel to the *bc* plane. These sheets are then stacked along *a* axis. In addition, the crystal structure is further stabilized by C—H··· π interactions involving C8—C13 (centroid *Cg*1) and C15—C20 (centroid *Cg*2) (Table 1).

Experimental

A 100 ml three-necked round-bottomed flask was equipped with an argon inlet adapter, rubber septum, glass stopper and a magnetic stirring bar. The flask was filled with 5 ml of dichloromethane and *o*-vanillin (608.61 mg, 0.004 mol), and was then cooled in an ice-water bath while a solution of *m*-phenylene diamine (216.29 mg, 0.002 mol) in 5 ml of dichloromethane was added dropwise *via* syringe over 15 min. After 30 min, 10 g of anhydrous magnesium sulfate was added in one portion. The ice-water bath was removed, and the reaction mixture was stirred at room temperature for 2 h. The resulting mixture was then filtered through a sintered glass funnel with an aid of two 10 ml portions of dichloromethane, and the filtrate was concentrated at reduced pressure by rotary evaporation at room temperature to afford an orange powder. This material was dissolved in 150 ml of ethanol heated in an 353 K water bath while 270 ml of hot water was added with stirring. The resulting solution was allowed to cool to room temperature and was then further cooled in an ice-water bath for 2 h. Filtration

provided the 6,6'-dimethoxy-2,2'-[*m*-phenylenebis(nitrilomethylidyne)]diphenol. The crude product was then purified by column chromatography with *n*-hexane–diethyl ether 1:4. The product was dissolved in chloroform, and single crystals suitable for X-ray diffraction were obtained by evaporating the solvent at room temperature.

Refinement

O-bound H atoms were located in a difference map and refined isotropically. The remaining H atoms were positional geometrically and refined as riding, with C—H distances in the range 0.93 - 0.96 Å. The U_{iso} values were constrained to be 1.5 U_{eq} of the carrier atom for methyl H atoms and 1.2 U_{eq} for the remaining H atoms. The methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The dashed lines indicate intramolecular hydrogen bonds.

Fig. 2. The crystal packing of (I), viewed down the *a* axis. The intermolecular C—H···O hydrogen bonds are shown as dashed lines.

6,6'-Dimethoxy-2,2'-[m-phenylenebis(nitrilomethylidyne)]diphenol

Crystal data	
$C_{22}H_{20}N_2O_4$	$F_{000} = 1584$
$M_r = 376.40$	$D_{\rm x} = 1.342 \ {\rm Mg \ m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 5349 reflections
<i>a</i> = 19.5677 (7) Å	$\theta = 1.5 - 30.3^{\circ}$
<i>b</i> = 6.8591 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 29.3903 (11) Å	T = 100.0 (1) K
$\beta = 109.131 \ (2)^{\circ}$	Block, orange
$V = 3726.8 (3) \text{ Å}^3$	$0.80\times0.41\times0.23~mm$
Z = 8	

Data collection

. .

Bruker SMART APEX II CCD area-detector

5487 independent reflections

diffractometer

Radiation source: fine-focus sealed tube	3714 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\text{int}} = 0.031$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\rm max} = 30.3^{\circ}$
T = 100.0(1) K	$\theta_{\min} = 1.5^{\circ}$
ω scans	$h = -27 \rightarrow 27$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -8 \rightarrow 9$
$T_{\min} = 0.893, T_{\max} = 0.979$	$l = -41 \rightarrow 29$
20168 measured reflections	

Re	finement
ne	memeni

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.159$	$w = 1/[\sigma^2(F_o^2) + (0.0877P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
5487 reflections	$\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
263 parameters	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.48169 (5)	0.71031 (13)	0.12357 (4)	0.0339 (2)
O2	0.42622 (5)	0.70622 (12)	0.19363 (4)	0.0337 (3)
O3	0.41256 (5)	-0.02808 (14)	0.47976 (3)	0.0360 (3)
04	0.39662 (5)	0.28910 (15)	0.42757 (4)	0.0345 (2)
N1	0.37688 (6)	0.89553 (15)	0.25253 (4)	0.0332 (3)
N2	0.31250 (6)	0.55350 (17)	0.37499 (4)	0.0342 (3)

C1	0.44357 (7)	0.88164 (17)	0.17962 (5)	0.0307 (3)
C2	0.47494 (7)	0.88652 (18)	0.14290 (5)	0.0325 (3)
C3	0.49608 (8)	1.0641 (2)	0.12906 (6)	0.0410 (4)
H3A	0.5184	1.0676	0.1056	0.049*
C4	0.48410 (10)	1.2363 (2)	0.15010 (6)	0.0483 (4)
H4A	0.4987	1.3543	0.1407	0.058*
C5	0.45103 (9)	1.2344 (2)	0.18464 (6)	0.0459 (4)
H5A	0.4422	1.3512	0.1978	0.055*
C6	0.43032 (7)	1.05683 (19)	0.20024 (5)	0.0349 (3)
C7	0.39534 (7)	1.05516 (19)	0.23658 (5)	0.0367 (3)
H7A	0.3858	1.1732	0.2489	0.044*
C8	0.33731 (7)	0.89671 (18)	0.28512 (5)	0.0334 (3)
C9	0.28861 (8)	1.0459 (2)	0.28590 (6)	0.0405 (4)
H9A	0.2836	1.1543	0.2661	0.049*
C10	0.24824 (8)	1.0302 (2)	0.31643 (6)	0.0445 (4)
H10A	0.2163	1.1298	0.3171	0.053*
C11	0.25398 (7)	0.8711 (2)	0.34595 (6)	0.0413 (4)
H11A	0.2261	0.8632	0.3662	0.050*
C12	0.30233 (7)	0.7206 (2)	0.34523 (5)	0.0343 (3)
C13	0.34366 (7)	0.73609 (19)	0.31490 (5)	0.0328 (3)
H13A	0.3761	0.6373	0.3146	0.039*
C14	0.26012 (7)	0.4806 (2)	0.38664 (5)	0.0371 (3)
H14A	0.2148	0.5389	0.3751	0.045*
C15	0.26938 (7)	0.3105 (2)	0.41726 (5)	0.0376 (3)
C16	0.20960 (8)	0.2280 (3)	0.42651 (6)	0.0516 (5)
H16A	0.1644	0.2863	0.4140	0.062*
C17	0.21716 (8)	0.0632 (3)	0.45369 (6)	0.0579 (5)
H17A	0.1772	0.0106	0.4597	0.069*
C18	0.28455 (8)	-0.0272 (3)	0.47251 (6)	0.0491 (4)
H18A	0.2893	-0.1394	0.4910	0.059*
C19	0.34440 (7)	0.0503 (2)	0.46362 (5)	0.0361 (3)
C20	0.33712 (7)	0.2194 (2)	0.43601 (5)	0.0325 (3)
C21	0.50031 (8)	0.7139 (2)	0.08047 (6)	0.0399 (4)
H21A	0.4984	0.5840	0.0680	0.060*
H21B	0.5483	0.7649	0.0874	0.060*
H21C	0.4667	0.7953	0.0570	0.060*
C22	0.42160 (8)	-0.2084 (2)	0.50499 (5)	0.0415 (4)
H22A	0.4715	-0.2466	0.5147	0.062*
H22B	0.3924	-0.3066	0.4843	0.062*
H22C	0.4070	-0.1937	0.5329	0.062*
H2A	0.4091 (9)	0.743 (3)	0.2201 (7)	0.054 (5)*
H4B	0.3807 (11)	0.392 (3)	0.4071 (8)	0.071 (6)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0321 (5)	0.0275 (5)	0.0410 (6)	0.0002 (4)	0.0107 (4)	0.0058 (4)
O2	0.0350 (5)	0.0188 (5)	0.0480 (7)	-0.0009 (4)	0.0145 (5)	0.0020 (4)

O3	0.0245 (5)	0.0483 (6)	0.0332 (5)	-0.0027 (4)	0.0065 (4)	0.0031 (4)
O4	0.0207 (4)	0.0419 (6)	0.0408 (6)	0.0003 (4)	0.0099 (4)	-0.0004 (5)
N1	0.0276 (5)	0.0248 (6)	0.0384 (7)	0.0034 (4)	-0.0013 (5)	-0.0030 (5)
N2	0.0254 (5)	0.0406 (7)	0.0330 (6)	0.0049 (5)	0.0047 (5)	-0.0097 (5)
C1	0.0245 (6)	0.0198 (6)	0.0385 (8)	-0.0009 (4)	-0.0020 (5)	0.0055 (5)
C2	0.0246 (6)	0.0247 (7)	0.0393 (8)	-0.0014 (5)	-0.0015 (6)	0.0072 (5)
C3	0.0387 (8)	0.0327 (8)	0.0403 (9)	-0.0068 (6)	-0.0022 (6)	0.0144 (6)
C4	0.0577 (10)	0.0262 (7)	0.0462 (10)	-0.0104 (6)	-0.0034 (8)	0.0127 (7)
C5	0.0525 (9)	0.0177 (7)	0.0488 (10)	-0.0014 (6)	-0.0088 (8)	0.0030 (6)
C6	0.0316 (7)	0.0219 (6)	0.0385 (8)	0.0016 (5)	-0.0058 (6)	0.0023 (5)
C7	0.0327 (7)	0.0223 (6)	0.0408 (8)	0.0053 (5)	-0.0075 (6)	-0.0056 (6)
C8	0.0249 (6)	0.0296 (7)	0.0359 (8)	0.0039 (5)	-0.0032 (6)	-0.0103 (6)
C9	0.0320 (7)	0.0321 (7)	0.0443 (9)	0.0105 (6)	-0.0052 (6)	-0.0082 (6)
C10	0.0334 (7)	0.0411 (8)	0.0483 (9)	0.0173 (6)	-0.0013 (7)	-0.0141 (7)
C11	0.0274 (7)	0.0472 (9)	0.0417 (8)	0.0109 (6)	0.0010 (6)	-0.0152 (7)
C12	0.0238 (6)	0.0372 (8)	0.0338 (8)	0.0057 (5)	-0.0016 (5)	-0.0113 (6)
C13	0.0230 (6)	0.0291 (7)	0.0392 (8)	0.0067 (5)	0.0003 (6)	-0.0095 (6)
C14	0.0215 (6)	0.0564 (9)	0.0301 (7)	0.0070 (6)	0.0038 (6)	-0.0090 (6)
C15	0.0223 (6)	0.0623 (10)	0.0269 (7)	0.0011 (6)	0.0063 (5)	-0.0054 (6)
C16	0.0208 (7)	0.0974 (14)	0.0370 (9)	0.0051 (7)	0.0101 (6)	0.0044 (9)
C17	0.0258 (7)	0.1075 (15)	0.0429 (10)	-0.0062 (8)	0.0147 (7)	0.0139 (10)
C18	0.0299 (7)	0.0806 (12)	0.0361 (9)	-0.0060(7)	0.0099 (7)	0.0115 (8)
C19	0.0226 (6)	0.0594 (9)	0.0247 (7)	-0.0022 (6)	0.0058 (5)	-0.0027 (6)
C20	0.0207 (6)	0.0510 (9)	0.0255 (7)	-0.0023 (5)	0.0072 (5)	-0.0072 (6)
C21	0.0355 (7)	0.0430 (8)	0.0390 (8)	0.0019 (6)	0.0092 (6)	0.0109 (7)
C22	0.0342 (7)	0.0578 (10)	0.0287 (7)	-0.0065 (7)	0.0053 (6)	0.0059(7)

Geometric parameters (Å, °)

1.3602 (16)	C9—C10	1.380 (2)
1.4285 (18)	С9—Н9А	0.9300
1.3506 (15)	C10—C11	1.376 (2)
0.975 (18)	C10—H10A	0.9300
1.3704 (16)	C11—C12	1.4051 (18)
1.4229 (18)	C11—H11A	0.9300
1.3547 (16)	C12—C13	1.390 (2)
0.91 (2)	С13—Н13А	0.9300
1.2884 (18)	C14—C15	1.448 (2)
1.4156 (19)	C14—H14A	0.9300
1.2838 (18)	C15—C16	1.404 (2)
1.4156 (19)	C15—C20	1.4045 (19)
1.406 (2)	C16—C17	1.364 (3)
1.4076 (19)	C16—H16A	0.9300
1.3895 (18)	C17—C18	1.397 (2)
1.388 (2)	C17—H17A	0.9300
0.9300	C18—C19	1.387 (2)
1.371 (3)	C18—H18A	0.9300
0.9300	C19—C20	1.396 (2)
1.407 (2)	C21—H21A	0.9600
	$\begin{array}{c} 1.3602 \ (16) \\ 1.4285 \ (18) \\ 1.3506 \ (15) \\ 0.975 \ (18) \\ 1.3704 \ (16) \\ 1.4229 \ (18) \\ 1.3547 \ (16) \\ 0.91 \ (2) \\ 1.2884 \ (18) \\ 1.4156 \ (19) \\ 1.2838 \ (18) \\ 1.4156 \ (19) \\ 1.4076 \ (19) \\ 1.3895 \ (18) \\ 1.388 \ (2) \\ 0.9300 \\ 1.371 \ (3) \\ 0.9300 \\ 1.407 \ (2) \end{array}$	1.3602 (16) $C9-C10$ $1.4285 (18)$ $C9-H9A$ $1.3506 (15)$ $C10-C11$ $0.975 (18)$ $C10-H10A$ $1.3704 (16)$ $C11-C12$ $1.4229 (18)$ $C11-H11A$ $1.3547 (16)$ $C12-C13$ $0.91 (2)$ $C13-H13A$ $1.2884 (18)$ $C14-C15$ $1.4156 (19)$ $C15-C16$ $1.4156 (19)$ $C15-C16$ $1.406 (2)$ $C16-C17$ $1.4076 (19)$ $C16-H16A$ $1.388 (2)$ $C17-C18$ $1.388 (2)$ $C17-H17A$ 0.9300 $C18-C19$ $1.371 (3)$ $C18-H18A$ 0.9300 $C19-C20$ $1.407 (2)$ $C21-H21A$

С5—Н5А	0.9300	C21—H21B	0.9600
C6—C7	1.445 (2)	C21—H21C	0.9600
С7—Н7А	0.9300	С22—Н22А	0.9600
C8—C13	1.387 (2)	C22—H22B	0.9600
С8—С9	1.4036 (18)	C22—H22C	0.9600
C2—O1—C21	116.28 (10)	C13—C12—C11	119.31 (14)
C1—O2—H2A	101.6 (10)	C13—C12—N2	117.69 (11)
C19—O3—C22	117.51 (11)	C11—C12—N2	122.98 (14)
C20—O4—H4B	105.4 (12)	C8—C13—C12	120.98 (12)
C7—N1—C8	121.48 (11)	C8—C13—H13A	119.5
C14—N2—C12	121.16(11)	С12—С13—Н13А	119.5
O2—C1—C2	118.15 (11)	N2—C14—C15	122.10 (12)
02-C1-C6	121.95 (14)	N2—C14—H14A	118.9
C_{2} — C_{1} — C_{6}	119.90 (12)	C15—C14—H14A	118.9
$01 - C^2 - C^3$	125 29 (14)	C16-C15-C20	118 94 (15)
01 - 02 - 03	115 21 (10)	C16-C15-C14	120.17(13)
C_{3} C_{2} C_{1}	119.50 (13)	C_{20} C_{15} C_{14}	120.17(13) 120.81(12)
$C_{4} = C_{2} = C_{1}$	120.36 (16)	C_{17} C_{16} C_{15}	120.61(12)
$C_4 = C_3 = C_2$	110.8	$C_{17} - C_{16} - H_{16A}$	110 7
$C_2 = C_2 = H_2 \Lambda$	110.0		119.7
$C_2 = C_3 = \Pi_3 A$	119.0	C16 C17 C18	119.7
C_{5}	120.70 (13)	$C_{10} - C_{17} - C_{18}$	120.40 (14)
C_{3} C_{4} H_{4}	119.0	C18_C17_H17A	119.8
$C_3 = C_4 = H_4 A$	119.0	$C_{18} - C_{17} - H_{17}$	119.8
C4 = C5 = C6	120.37 (14)		120.09 (17)
C4—C5—H5A	119.8	C19—C18—H18A	120.0
С6—С5—Н5А	119.8	CI/CI8HI8A	120.0
C5-C6-C1	119.03 (15)	03-019-018	124.81 (15)
C5—C6—C7	120.29 (13)	03-C19-C20	115.43 (12)
C1—C6—C7	120.67 (12)	C18—C19—C20	119.76 (13)
N1—C7—C6	122.19 (12)	O4—C20—C19	118.02 (12)
N1—C7—H7A	118.9	O4—C20—C15	121.89 (13)
С6—С7—Н7А	118.9	C19—C20—C15	120.08 (12)
C13—C8—C9	119.33 (14)	O1—C21—H21A	109.5
C13—C8—N1	117.82 (11)	O1—C21—H21B	109.5
C9—C8—N1	122.69 (13)	H21A—C21—H21B	109.5
C10—C9—C8	119.34 (14)	O1—C21—H21C	109.5
С10—С9—Н9А	120.3	H21A—C21—H21C	109.5
С8—С9—Н9А	120.3	H21B—C21—H21C	109.5
C11—C10—C9	121.73 (13)	O3—C22—H22A	109.5
C11-C10-H10A	119.1	O3—C22—H22B	109.5
C9—C10—H10A	119.1	H22A—C22—H22B	109.5
C10-C11-C12	119.31 (15)	O3—C22—H22C	109.5
C10-C11-H11A	120.3	H22A—C22—H22C	109.5
C12—C11—H11A	120.3	H22B—C22—H22C	109.5
C21—O1—C2—C3	-11.33 (18)	C10-C11-C12-N2	178.88 (13)
C21—O1—C2—C1	168.48 (11)	C14—N2—C12—C13	-148.15 (13)
O2—C1—C2—O1	2.78 (17)	C14—N2—C12—C11	33.3 (2)
C6—C1—C2—O1	-176.44 (11)	C9—C8—C13—C12	0.31 (19)

-177.40 (11)	N1—C8—C13—C12	-175.16 (12)
3.38 (19)	C11—C12—C13—C8	-0.6 (2)
177.57 (13)	N2-C12-C13-C8	-179.22 (11)
-2.2 (2)	C12—N2—C14—C15	-179.64 (12)
-0.3 (2)	N2-C14-C15-C16	-175.80 (14)
1.7 (2)	N2-C14-C15-C20	0.8 (2)
-0.5 (2)	C20-C15-C16-C17	0.7 (2)
-179.89 (13)	C14—C15—C16—C17	177.33 (16)
178.77 (12)	C15-C16-C17-C18	-0.5 (3)
-2.04 (19)	C16—C17—C18—C19	-0.1 (3)
-1.82 (19)	C22—O3—C19—C18	4.0 (2)
177.37 (11)	C22—O3—C19—C20	-175.40 (12)
-174.64 (11)	C17—C18—C19—O3	-179.07 (15)
-178.56 (12)	C17—C18—C19—C20	0.3 (3)
2.0 (2)	O3—C19—C20—O4	0.32 (19)
-154.90 (12)	C18—C19—C20—O4	-179.14 (14)
29.79 (19)	O3—C19—C20—C15	179.36 (13)
0.27 (19)	C18—C19—C20—C15	-0.1 (2)
175.51 (13)	C16—C15—C20—O4	178.60 (13)
-0.5 (2)	C14—C15—C20—O4	2.0 (2)
0.2 (2)	C16—C15—C20—C19	-0.4 (2)
0.4 (2)	C14—C15—C20—C19	-177.03 (13)
	$\begin{array}{c} -177.40 \ (11) \\ 3.38 \ (19) \\ 177.57 \ (13) \\ -2.2 \ (2) \\ -0.3 \ (2) \\ 1.7 \ (2) \\ -0.5 \ (2) \\ -179.89 \ (13) \\ 178.77 \ (12) \\ -2.04 \ (19) \\ -1.82 \ (19) \\ 177.37 \ (11) \\ -174.64 \ (11) \\ -178.56 \ (12) \\ 2.0 \ (2) \\ -154.90 \ (12) \\ 29.79 \ (19) \\ 0.27 \ (19) \\ 175.51 \ (13) \\ -0.5 \ (2) \\ 0.2 \ (2) \\ 0.4 \ (2) \end{array}$	-177.40 (11)N1-C8-C13-C12 $3.38 (19)$ C11-C12-C13-C8 $177.57 (13)$ N2-C12-C13-C8 $-2.2 (2)$ C12-N2-C14-C15 $-0.3 (2)$ N2-C14-C15-C16 $1.7 (2)$ N2-C14-C15-C16 $-0.5 (2)$ C20-C15-C16-C17 $-179.89 (13)$ C14-C15-C16-C17 $178.77 (12)$ C15-C16-C17-C18 $-2.04 (19)$ C16-C17-C18-C19 $-1.82 (19)$ C22-O3-C19-C20 $-174.64 (11)$ C17-C18-C19-O3 $-178.56 (12)$ C17-C18-C19-C20 $2.0 (2)$ O3-C19-C20-O4 $-154.90 (12)$ C18-C19-C20-O4 $29.79 (19)$ O3-C19-C20-C15 $175.51 (13)$ C16-C15-C20-O4 $-0.5 (2)$ C14-C15-C20-O4 $-0.5 (2)$ C14-C15-C20-C19 $0.4 (2)$ C14-C15-C20-C19

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
O2—H2A…N1	0.98 (2)	1.67 (2)	2.590 (2)	155 (2)	
O4—H4B···N2	0.91 (2)	1.75 (2)	2.592 (2)	151 (2)	
C4—H4A···O1 ⁱ	0.93	2.50	3.340 (2)	151	
C5—H5A···O2 ⁱ	0.93	2.45	3.296 (2)	151	
C22—H22A···O4 ⁱⁱ	0.96	2.60	3.502 (2)	157	
C9—H9A…Cg1 ⁱⁱⁱ	0.93	2.86	3.709 (2)	152	
C11—H11A····Cg2 ⁱ	0.93	2.91	3.351 (2)	111	
Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1, -y, -z+1$; (iii) $-x+1/2, y+1/2, -z+1/2$.					

Fig. 2